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Abstract A quantum control experiment typically seeks a shaped electromagnetic
field to drive a system towards a specified observable objective. The large number of
successful experiments can be understood through an exploration of the underlying
quantum control landscape, which maps the objective as a function of the control
variables. Specifically, under certain assumptions, the control landscape lacks sub-
optimal traps that could prevent identification of an optimal control. One of these
assumptions is that there are no restrictions on the control variables, however, in prac-
tice control resources are inevitably constrained. The associated constrained quantum
control landscape may be difficult to freely traverse due to the presence of limited
resource induced traps. This work develops algorithms to (1) seek optimal controls
under restricted resources, (2) explore the nature of apparent suboptimal landscape
topology, and (3) favorably alter trap topology through systematic relaxation of the
constraints. A set of mathematical tools are introduced to meet these needs by working
directly with dynamic controls, rather than the prior studies that employed intermedi-
ate so-called kinematic control variables. The new tools are illustrated using few-level
systems showing the capability of systematically relaxing constraints to convert an
isolated trap into a level set or saddle feature on the landscape, thereby opening up
the ability to find new solutions including those of higher fidelity. The results indi-
cate the richness and complexity of the constrained quantum control landscape upon
considering the tradeoff between resources and freedom to move on the landscape.
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1 Introduction

Many quantum control experiments aim to identify a shaped electromagnetic field to
enable reaching high fidelity of a desired observable as a result of tailored manipula-
tion of the system’s dynamics. Improvements in pulse-shaping, detection, and learning
algorithms have led to a large number of successful quantum control experiments [1].
The search for a set of optimal control variables occurs on an underlying quantum
control landscape [2], defined as the observable as a function of the control variables.
Upon satisfaction of three assumptions, the control landscape has been found to be
free of suboptimal traps [2]. If such traps were present they could hinder ready tra-
versal of the landscape to achieve complete control. The aforementioned assumptions
are that (1) the quantum system is controllable [3,4], (2) the set of time-dependent
functions forming the matrix δU (T, 0)/δε(t) is full rank, and (3) the control variables
may be freely accessed without constraint. Here the control is ε(t), 0 ≤ t ≤ T , and
the time evolution operator U (t, 0) is evaluated at the final time T where the control
performance is evaluated. Assumption (3) is of prime interest for study as control
resources for constructing ε(t) are inevitably restricted in the laboratory. Thus the
present work explores the impact on apparent landscape topology when assumption
(3) is not fully satisfied. Here we refer to the evident new and possibly restrictive
landscape features as apparent, since they arise on the nominally trap-free landscape
due to constraints on the controls. In regard to these circumstances, numerical studies
have considered quantum control scenarios with spectral component restrictions [5–
7] and limitations on available phase controls [8,9]. An important research goal is to
attain a general understanding of how constraints on control resources affect optimal
performance. The present work develops mathematical techniques to explore the con-
strained quantum control landscape topology and alter the apparent landscape features
by systematically relaxing the control constraints. The ability to alleviate constraint-
induced landscape limitations (e.g., traps) opens up the prospect of considering the
tradeoff between resources and control performance.

As a specific illustration of the concepts above, here we consider simulations with
the goal of optimizing the state-to-state transition probability Pi→ f at time T ,

Pi→ f = |〈 f |U (T, 0)|i〉|2, (1)

where U (t, 0) solves the time-dependent Schrödinger equation

ı h̄
∂

∂t
U (t, 0) = H(t)U (t, 0), U (0, 0) = 1. (2)

The analysis and illustrations in this work are based on working with an N -level quan-
tum system described by a reference Hamiltonian H0 and a field coupling transition
dipole μ so that

H(t) = H0 − με(t). (3)

This paper is concerned with the impact of a constrained control ε(t) upon the appar-
ent landscape topology, as well as the potential gains offered by systematic relaxation
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Fig. 1 (Color online) Schematic illustration of possible topologies at apparent suboptimal critical points
on the constrained quantum control transition probability Pi→ f landscape. Here, d1 and d2 refer to two
control variables for graphical purposes, but in practice there will generally be many controls employed to
create a field ε(t). a An initial Pi→ f landscape climb (represented by the curved path) stops at a suboptimal
trap denoted by the black dot, with the corresponding control field εtrap(t). This trap is an isolated point,
where any variation to the controls would result in a lower Pi→ f value. b A trap (black dot) is shown on
a manifold of suboptimal solutions having the same value for Pi→ f . A trajectory can be taken along this
manifold represented by the curved arrow, where εlevelset(t) is one member of a set of homologous control
fields forming the manifold. c This case shows that the critical point is a saddle (i.e., truncated along the
d1 axis for graphical reasons), where further ascension of the landscape is possible, as represented by the
curved path. A control field producting optimal, or at least improved performance is denoted by εoptimal(t).
The arrows L1 and L2 correspond to possible topological transformations, i.e., from a suboptimal isolated
point to a level set and saddle, respectively. Such transformations are implemented by managed relaxation
of the original control constraint, as described in Sect. 2.4

of the constraints. Importantly, this work extends recent studies that employed kine-
matic (time-independent) control variables as a means to simplify an initial analysis
of the constrained landscape [10–12]. Here we sidestep the kinematic variables to
directly operate with the field ε(t). Figure 1 schematically illustrates the goals of the
mathematical tools in the paper, where it is understood that the sketches represent
three distinct types of constrained transition probability landscapes described below.
The controls in Fig. 1 are applied electromagnetic fields, but like situations may be
generalized to consider any type of control variables; in addition, the same control
issues apply to other observables besides the state-to-state transition probability. In
Fig. 1a the trajectory is a gradient-based landscape ascent that is subject to an imposed
constraint. For graphical purposes only two control variables d1 and d2 are shown, but
in practice many more variables are likely used to create a field ε(t). With significant
constraints present, it may not be possible to achieve full control and a resource-limited
suboptimal critical point may be encountered, which is represented by the black dot

123



J Math Chem (2015) 53:718–736 721

and corresponding control field εtrap(t) in Fig. 1a. Understanding the topology of a
suboptimal critical point on the control landscape entails examining the associated
second-order Hessian matrix evaluated under the constraint conditions. The topology
at the black dot in Fig. 1a is that of an isolated trap, which would be reflected by
a negative definite Hessian. Two alternate topological circumstances are shown in
Fig. 1b, c. Figure 1b shows how a trap (black dot) may exist on a manifold of sub-
optimal solutions having the same Pi→ f value; such a trap circumstance corresponds
to a negative semidefinite Hessian. Even when trapped at a suboptimal yield, having
the freedom to move on a level set may open up the prospect of finding a field with
desirable secondary properties such as robustness to noise. A trajectory along the level
set is represented by the curved path, and εlevelset(t) corresponds to one member of
a homologous family of distinct control fields identified by moving in the null space
of the Hessian. Figure 1c illustrates a critical point (black dot) located at a saddle,
with an indefinite Hessian. In the latter case, the landscape can be further ascended,
producing a better yield or even possibly an optimal solution as denoted by εoptimal(t).
In Fig. 1, the arrows L1 and L2 represent topological transformations changing an iso-
lated trap into a level set and saddle, respectively. The paper presents the mathematical
methodology to enable finding such transformations through systematic relaxation of
the constrained resources.

The remainder of the paper is structured as follows. Section 2 sets out a gradient-
based technique to ascend the transition probability landscape while the control satis-
fies an imposed constraint. The myopic nature of the search algorithm permits land-
scape ascent until a critical point is encountered. The means to determine the con-
strained Hessian are then presented in order to assess the nature of the critical point
and especially permit relaxed constraints to implement transformations L1 and L2 in
Fig. 1. Importantly, the mathematical tools presented in Sect. 2 are general and may
be applied as the circumstances dictate. Each case needs to be assessed on its own
merits, but with knowledge that eventual full constraint relaxation will enable a trap-
free ascent of the landscape (considering as well that assumptions (1) and (2) above
are also satisfied). Section 3 presents simple illustrative examples of the relaxation
processes from Sect. 2, and Sect. 4 provides concluding remarks.

2 Mathematical techniques

In the laboratory, electromagnetic control fields are often expressed in terms of spectral
amplitudes and/or phases. The remainder of this work will utilize the length-M vector
β to represent the available control variables βm, m = 1, . . . , M , regardless of their
specific nature. The control landscape is defined as an observable (here, Pi→ f ) as a
function of the control variables. We consider a single imposed constraint function
C(β) such that C(β) = C0 is maintained at the constant value C0 throughout a
landscape traversal by varying β. Naturally the form of the function C(β) is important
for specifying the particular constraint. The relaxation of the constraint can involve
changing C0 as well as the form of C(β). The latter circumstance is considered by
including an additional set of constraint form variables cl , l = 1, . . . , L such that
C(β) → C(c, β). The capability of systematically relaxing the form of C opens
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up the prospect for the topological transformations set out in Fig. 1, which will be
considered in Sect. 2.4.

2.1 Traversing the quantum control landscape with constrained controls

A constraint function C is incorporated into the optimization of Pi→ f , and the algo-
rithm uses a variation of the D-MORPH technique [13]. The form of the constraint
will be specified as needed (i.e., in Sect. 3). In addition, the present work considers a
single constraint C on the control variables, and the formulation below may be readily
generalized to the case of multiple constraints. For the initial landscape ascent, the
constraint form parameters c are considered fixed at their initial values, such that only
the control variables β are permitted to vary. We introduce the variable s > 0 to label
an evolving control trajectory, denoted β(s), along the ascent. The goal is to maximize
Pi→ f over β while satisfying C(β(s)) ≡ C(s) = C0. Thus, we wish to concomitantly
enforce the climbing condition

d Pi→ f

ds
= ∇β P�

i→ f
∂β

∂s
≥ 0 (4)

and maintain the constraint

dC

ds
= ∇βC� ∂β

∂s
= 0, (5)

where∇β Pi→ f is the length-M gradient vector containing elements ∂ Pi→ f /∂βm, m =
1, . . . , M and � denotes vector transpose. Likewise, ∇βC contains the elements
∂C/∂βm . Such compact matrix–vector notation will be used throughout this work.
The gradient ∂ Pi→ f /∂βm may be evaluated as [14]

∂ Pi→ f

∂βm
= 2

h̄
Im

[∫ T

0
〈i |U †(T, 0)| f 〉〈 f |U (T, 0)U †(t, 0)

∂ H(t)

∂βm
U (t, 0)|i〉dt

]
. (6)

The goal is to simultaneously satisfy Eqs. (4) and (5) by specifying a differential
equation for β(s). In this regard, the vector ∂β/∂s can be conveniently written in
terms of a projector matrix PC acting on a function (vector) f that may be freely
chosen,

∂β

∂s
= PC f (7)

where
PC = 1 − ∇βC(∇βC�∇βC)−1∇βC�, (8)

and PC projects into the direction orthogonal to ∇βC in the β-space, thereby assuring
that C(β(s)) = C0 is maintained. The term (∇βC�∇βC) is a scalar, which is assumed
to be nonzero. Upon substituting Eq. (8) and the particular choice f = ∇β Pi→ f into
Eq. (7), then ∂β/∂s will satisfy Eqs. (4) and (5). A trajectory β(s) will stop when
d Pi→ f /ds = 0. This can occur when either a global landscape extremum is reached
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(e.g., Pi→ f = 1.0), or when a suboptimal critical point is encountered. Importantly,
the latter circumstance will generally arise when ∇β Pi→ f 
= 0. As such, setting
d Pi→ f /ds = 0 in Eq. (4) and utilizing Eq. (7) leads to the trap condition of

PC∇β Pi→ f = 0, (9)

where 0 is a vector of zeros, implying that the gradient vectors ∇βC and ∇β Pi→ f

are parallel at a suboptimal trap. The simple schematic topological sketches in Fig. 1
also need to be understood in terms of the demands expressed in Eq. (9), which are
expanded further in Sect. 2.2 below.

2.2 Exploring local landscape topology at a trap

At a critical point, d Pi→ f /ds = 0, and exploring the local landscape while main-
taining the Pi→ f value to second order requires satisfying d2 Pi→ f /ds2 = 0. This
entails utilizing the second-order Hessian matrix, which is nominally comprised of
the elements ∂2 Pi→ f /∂βm∂βn, m, n = 1, . . . , M . However, this form of the Hessian
generally will not properly account for the inclusion of a constraint present on the β

variables and thus may not reflect the constrained landscape topology. Here we derive
an expression for the constrained Hessian that incorporates the function C and will
be utilized to (1) identify local topology and (2) enable a landscape traversal in the
neighborhood of a suboptimal critical point.

We introduce a new variable r for local critical point landscape exploration in order
to distinguish it from the initial climbing trajectory monitored by s. To maintain Pi→ f

to second order, we wish to find an expression for ∂β/∂r that satisfies d2 Pi→ f /dr2 =
0. Thus, differentiating Eq. (4) (i.e., understood with s → r ) and equating the result
to zero yields

∇β P�
i→ f

∂2β

∂r2 = −
M∑

m,n=1

∂βm

∂r

∂2 Pi→ f

∂βm∂βn

∂βn

∂r
. (10)

Similarly, we also demand that the constraint be maintained to second order such that
differentiating Eq. (5) and equating the result to zero produces

∇βC� ∂2β

∂r2 = −
M∑

m,n=1

∂βm

∂r

∂2C

∂βm∂βn

∂βn

∂r
. (11)

We introduce the scalar function K ,

K = ∇β P�
i→ f ∇βC

(
∇βC�∇βC

)−1
. (12)

and multiply Eq. (11) by K . Combining the latter result with Eqs. (8), (9), and (10)
gives

∇β P�
i→ f

∂2β

∂r2 = −
M∑

m,n=1

K
∂βm

∂r

∂2C

∂βm∂βn

∂βn

∂r
. (13)
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By equating the right hand sides of Eqs. (10) and (13), we have

M∑
m,n=1

∂βm

∂r

∂2 Pi→ f

∂βm∂βn

∂βn

∂r
=

M∑
m,n=1

K
∂βm

∂r

∂2C

∂βm∂βn

∂βn

∂r
, (14)

which can be rewritten as

M∑
m,n=1

∂βm

∂r

(
∂2 Pi→ f

∂βm∂βn
− K

∂2C

∂βm∂βn

)
∂βn

∂r
= 0. (15)

This equation can be understood as specifying the local control changes (i.e., ∂β/∂r )
that preserve the constraint condition and the second term in parenthesis, −K∇2C ,
takes into account this condition. In this fashion the nominal Hessian ∇2

β Pi→ f is
amended to form the appropriate constrained Hessian HC as

HC = ∇2
β Pi→ f − K∇2

βC. (16)

2.3 Moving on a suboptimal critical point level set

When the controls are not constrained, multiple solutions exist at the top of the transi-
tion probability landscape [15], which also implies an inherent degree of robustness to
noise. In this circumstance, the family of multiple optimal solutions can be explored
by requiring that control variations occur in the associated unconstrained Hessian (i.e.,
∇2

β Pi→ f ) null space, as this maintains the Pi→ f value to second order. As indicated
in Fig. 1b, a suboptimal critical point level set may also exist when operating with
constrained controls. Thus, we now develop a methodology to traverse a suboptimal
critical point level set, which utilizes the constrained Hessian HC derived in Sect. 2.2.
Specifically, we seek a form for ∂β/∂r that satisfies Eq. (15), written compactly as

(
∂β

∂r

)�
HC

∂β

∂r
= 0. (17)

While moving on the constrained level set we must still satisfy the constraint criterion
in Eq. (5), which led to the relation in Eq. (7). In the present context we have

∂β

∂r
= PC g (18)

where PC was given in Eq. (8) and the free function (vector) g will be specified below.
Inserting Eq. (18) into Eq. (17) yields

g�PCHCPC g = 0, (19)
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leading to defining the projected Hessian as

H̃ = PCHCPC (20)

so that Eq. (19) becomes
g�H̃g = 0. (21)

From Eqs. (18) and (21), moving on a suboptimal critical point level set will entail
forcing changes in β to occur with g lying in the null space of the projected Hessian.
Importantly, the projector PC , which in this work is formed based on the incorpo-
ration of a single constraint C , introduces one associated ‘trivial’ zero eigenvalue to
the projected Hessian. In this circumstance, it is necessary for there to be at least two
zero projected Hessian eigenvalues (i.e., to acceptable precision) in order to permit
a traversal of a suboptimal critical point level set. Section 2.4 will present a method
aiming to ‘create’ such nontrivial zero eigenvalues if none already exist by system-
atically morphing the form of the constraint. By denoting the projected Hessian zero
eigenvectors by ν̃ j , j = 2, . . . , J , we can define g as

g = Qg′ (22)

=
⎛
⎝ J∑

j=2

ν̃ j ν̃
�
j

⎞
⎠ g′ (23)

where the counting starts with j = 2 as the first nontrivial null space eigenvector.
Substituting Eq. (22) into Eq. (18) yields

∂β

∂r
= PC Qg′, (24)

where g′ is an arbitrary vector function whose choice will dictate the path taken on
the level set. In this fashion Eq. (24) may be viewed as a differential equation for β(r)

whose solution along with the Schrödinger equation will permit a suboptimal critical
point level set traversal.

2.4 Altering constraint-induced trap topology

In Sects. 2.1–2.3, the L constraint form parameters c of the function C were treated
as fixed, implying that C(β) = C0 maintained the same mathematical form while β

changed. However, a topic of prime interest is the nature of how systematic relaxation
of the constraint may lead to favorable topology changes. For example, transforming an
isolated trap into a level set (c.f., changing Fig. 1a into Fig. 1b) can lead to identification
of a family of homologous suboptimal controls, which implies an increased degree of
robustness to noise and possibly opens up other ancillary properties for optimization.
Alternatively, transforming a trap into a saddle (c.f., changing Fig. 1a into Fig. 1c)
could permit further ascent of the Pi→ f landscape. This section will introduce the
mathematical procedure for relaxing the L constraint parameters while keeping C =
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C0 as well as the controls β fixed at their suboptimal trap values. Following the
change in the constraint form parameters, movement in β can be considered to exploit
the altered topology. Importantly, the consideration here of constraint form relaxation
is of a limited nature through the parameters in c; the value of C0 could also be
considered for variation as well. In the most general context the constraints have a
functional form for variation, but wide classes of constraint function form variations
are permitted through c.

The parameter u is used to distinguish this new constraint parameter trajectory,
where c → c(u). To enforce C = C0, any change to c must satisfy

dC

du
=

(
∂C

∂c

)�
∂c

∂u
= 0. (25)

We introduce the projector P̃ into the space orthogonal to changes in Pi→ f ,

P̃ = 1 − ∇β Pi→ f (∇β P�
i→ f ∇β Pi→ f )

−1∇β P�
i→ f . (26)

Considering that Pi→ f depends on M control variables β, we may define the
R = M − 1 nonzero eigenvalues and eigenvectors of P̃ by σk and wk , respectively.
Because we wish to maintain the trap condition in Eq. (9) of ∇β Pi→ f and ∇βC being
parallel, any change to the constraint parameters c should satisfy

P̃∇βC = 0, (27)

or equivalently
w�

k ∇βC = 0 (28)

for k = 1, . . . , R. Differentiating Eq. (28) with respect to u and noting that Pi→ f does
not explicitly depend on c yields

w�
k �

∂c

∂u
= 0 (29)

where � is an M × L matrix with elements

�ml = ∂2C

∂βm∂cl
. (30)

Equations (25) and (29) are both of the form

p� ∂c

∂u
= 0 (31)

where p is a length-L vector. An L×M matrix 	 may be formed from the M equations
arising from (25) and (29), where
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	 =
⎛
⎝ | |

p1 . . . pM

| |

⎞
⎠ . (32)

An L × L projector matrix P	 is formed from 	 as

P	 = 1 − 	(	�	)−1	�, (33)

where the matrix 	�	 is assumed to be invertible. We may then write the differential
change in c as satisfying

∂c

∂u
= P	h (34)

with a function vector h that can be freely chosen to satisfy an ancillary objective. In
particular, below we will show that h can be chosen with the goals of seeking to (i)
transform a trap into a level set (i.e., Fig. 1a into Fig. 1b) or (ii) change a trap into a
saddle (i.e., Fig. 1a into Fig. 1c).

2.4.1 Changing a trap into a level set

To vary the constraint parameters c to enable the landscape topology transformation
represented by L1 in Fig. 1, we can express the goal through manipulation of the eigen-
spectrum of the projected Hessian H̃ following from Sect. 2.3. We seek (nontrivial)
zero projected Hessian eigenvalues λ̃ j and employ the cost function

L1 = Tr(H̃2) =
∑

j

(λ̃ j )
2. (35)

The goal is to minimizeL1 over c hoping that at least one nontrivial new zero eigenvalue
appears to acceptable precision. Differentiating L1 with respect to u yields

dL1

du
=

(
∂L1

∂c

)�
∂c

∂u
, (36)

where substitution of Eq. (34) results in

dL1

du
=

(
∂L1

∂c

)�
P	h. (37)

Minimization of L1 can be accomplished by choosing h = −∂L1/∂c. The sequential
operation of minimization of L1 and a level set traversal likely will call for iterative,
incremental steps, likened to the desired level set being a carpet rolled forward where
the next step depends on the previous one.

123



728 J Math Chem (2015) 53:718–736

2.4.2 Changing a trap into a saddle

To vary the constraint parameters to perform the topological transformation L2 in
Fig. 1, the cost function

L2 = Tr(HC ) =
∑

m

λm (38)

is utilized. Here, the aim is to maximize L2, which depends on the constrained Hessian
HC derived in Sect. 2.2, whose eigenvalues are denoted by λm . Recall that the level set
traversal algorithm from Sect. 2.3 required projecting changes in the controls to occur
in the null space of the projected Hessian H̃. However, in the case of creating a saddle
we are only concerned with the eigenspectrum of the constrained Hessian, as subse-
quent landscape ascent can be accomplished by either moving in the direction of newly
formed positive HC eigenvalues, or possibly by again employing the first-order ascent
procedure from Sect. 2.1. Following Eq. (37), we set h = ∂L2/∂c to maximize L2.

There is no guarantee that either of the goals in Sects. 2.4.1 or 2.4.2 may be achieved
with any particular chosen form of constraint relaxation. Importantly, exploration of
this issue is enabled by the tools above, especially consideration of whether minimal
levels of relaxation may have significant impact on the apparent constrained landscape
topology.

3 Numerical illustrations

The simulations presented in this work aim to illustrate employment of the generic
mathematical tools developed in Sect. 2 using simple model systems and associated
model dynamic controls. For the purpose of illustration, the control variables β are
chosen as the amplitudes of a field, where

ε(t) = exp

(
−8π

T 2

(
t − T

2

)) M∑
m=1

βmsin(ωmt + φm), (39)

though other dynamic controls such as phase parameters could also be used. The choice
of field form in Eq. (39) is itself a constraint, although with sufficient terms M and
reasonable choices for the frequencies ωm , the free manipulation of the parameters βm

and φm can generally satisfy the resource assumption (3) discussed in Sect. 1. Here,
we will impose significant constraints to illustrate behavior in the domain of limited
dynamic resources. All units in the following simulations are arbitrary. The form of
the imposed constraint function C will be provided in each case below.

3.1 Ascending the Pi→ f landscape with constrained amplitude controls

We begin by implementing the first-order landscape ascent algorithm described in
Sect. 2.1. The system has dimension N = 4. The Hamiltonian in Eq. (3) has H0
diagonal elements

H0 = [8.6532, 10.2908, 12.1528, 13.8258]
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and μ contains

μ = [μ(1, 1) = 0.1353, μ(2, 2) = 0.0033, μ(3, 3) = 0.3933, μ(4, 4) = 0.2736,

μ(1, 2) = 0.0226, μ(1, 3) = 0.2242, μ(1, 4) = 0.2742, μ(2, 3) = 0.2254,

μ(2, 4) = 0.1213, μ(3, 4) = 0.2031].

Pi→ f was chosen as P1→4 with the understanding that this is potentially a demanding
objective to optimize under constrained control resources. This example will be used
in Sect. 3.2.1 as a starting point to implement the transformation L1 in Fig. 1. A second
landscape climb with a different system will be performed in Sect. 3.2.2 as a basis for
illustrating the transformation L2 in Fig. 1.

An initial control field ε(t) of the form in Eq. (39) was generated with
M = 10 frequency components resonant with the energy transitions arising from H0
and 10 randomly chosen amplitudes and phases from the domains [0, 1] and [0, 2π ],
respectively. The final time was T = 10. After the phases were randomly chosen, they
were no longer varied, thereby just limiting the control to the coefficients βm .

A subset β̃ of β was subjected to the constraint

C(s) = 1

M ′
M ′∑

m′=1

(β̃m′(s))2 = C0, (40)

where M ′ = 8 and β̃ = [β1, . . . , β6, β8, β10]. This implies that the two amplitudes
β7 and β9 may freely vary (i.e., without being constrained by C). The form for C in
Eq. (40) is used for illustrative purposes and many other forms may be considered.
Importantly, M = 10 (i.e., the total number of constrained and unconstrained controls)
is larger than 2N − 2 = 6, which has been found to be the number of independent
properly chosen control variables generally required for complete Pi→ f control [14].
Here we explore the impact of the imposed ‘function’ constraint in Eq. (40), rather
than working with an insufficient number of controls, which has been considered in
previous work [8].

Given an initial set of amplitudes β ∈ [0, 1], the resultant value of C0 = 0.2925 was
demanded to remain fixed during the optimization of P1→4. As the amplitudes morph
during the P1→4 ascent, C was maintained on the order of 10−8, and P1→4 monoton-
ically increased from 0.1556 to 0.6119 as shown in Fig. 2a. At P1→4 = 0.6119,
no variation to the control variables could result in further increase in P1→4 with
the imposed constraint from Eq. (40). The values for all M = 10 parameters βm at
P1→4 = 0.1556 and 0.6119 are shown in Fig. 2b. While the initial amplitudes were
chosen from the domain [0, 1] (upright triangles in Fig. 2b), no effort was made to con-
strain the amplitudes to reside within this region during the landscape trajectory. The
control that changes the most during the optimization is β7, which is not an element
of β̃. The control β9, also not in β̃, changed much less by comparison. The control
amplitudes vary in a coordinated, albeit partially constrained manner to increase P1→4
until d P1→4/ds = 0.

To determine the local landscape topology at P1→4 = 0.6119, the constrained
Hessian HC (c.f., Eq. 16) was computed, and its eigenvalues are shown in Fig. 3. All
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Fig. 2 a Optimization of P1→4 where the field had ten amplitudes as the control variables (c.f., Eq. 39). 8 of
these amplitudes (β̃; see Sect. 3.1) are subject to the constraint C in Eq. (40); β7 and β9 are permitted to freely
vary. P1→4 increases from 0.1556 to 0.6119, where a constraint-induced critical point is encountered. The
amplitudes corresponding to the initial landscape point at P1→4 = 0.1556 are shown as upright triangles
in (b). The amplitudes corresponding to P1→4 = 0.6119 are shown as inverted triangles in (b). The initial
amplitudes are randomly chosen from the domain [0, 1], and no attempt was made to keep the amplitudes
within this range during optimization. The amplitudes changed in a complex and coordinated manner to
achieve the best accessible P1→4 yield
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Fig. 3 Eigenvalues of the constrained Hessian (c.f., Eq. 16) at the trap encountered at P1→4 = 0.6119 in
Fig. 2a. All eigenvalues are negative and range from −0.8798 to −0.0383, implying that the trap exists as
an isolated point on the control landscape

the eigenvalues are negative and range from −0.8798 to −0.0383. This circumstance
implies that the encountered critical point is an isolated suboptimal trap with a topology
like that displayed in Fig. 1a, such that any change in the defined controls induced by
noise or other variations would result in a decrease in P1→4. In Sect. 3.2.1, we will
transform this isolated trap into a level set represented by the change in going from
Fig. 1a to Fig. 1b.

3.2 Altering apparent trap topology

The transformations of landscape topology indicated in Fig. 1 will be illustrated below.
Section 3.2.1 will utilize the case from Sect. 3.1 and Fig. 2 to create a trap → level
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set transformation along with a traversal of the resultant level set. Section 3.2.2 will
utilize a different system to illustrate the trap → saddle transformation along with
subsequent further ascent of the landscape.

3.2.1 Turning an isolated point into a level set

In order to employ the methodology presented in Sect. 2.4 in an attempt to change the
topology of the encountered trap in Sect. 3.1, a set of L constraint parameters c are
introduced in C . In this fashion, we consider the simple case of C → C ′, where

C ′ = 1

M ′
M ′∑

m′=1

(β̃m′ − cm′)2 + cM ′+1 ≡ C0, (41)

where cM ′+1 is included to compensate as needed for the variations of cm′ , m′ =
1, . . . , M ′ and maintain C ′ = C0. The change in form provided by Eq. (41) may be
viewed as a bias for the subsequent changes in β once the topology has been changed.
More radical changes in the form for C(β) could be considered as well, while the
subtle shift provided by Eq. (41) will be shown to already have a significant impact
on the local topology of the landscape. Consistent with the original constraint in Eq.
(40), the length L = M ′ + 1 = 9 vector of constraint parameters c may be viewed as
zero during the initial landscape ascent in Fig. 2. The goal now is to morph c, while
β are fixed, in order to change the encountered isolated trap at P1→4 = 0.6119 into
a level set using the formulation laid out in Sect. 2.4. After morphing c, the control
variables β will be subject to further constrained variation within Eq. (41) in order to
move on the newly opened up level set.

Figure 4a shows the initial and final values for the nine elements of c as they
are morphed in an effort to create nontrivial projected Hessian eigenvalues through
minimization of L1 in Eq. (35). Since P1→4 is independent of c, it remains unchanged
during the constraint morphing procedure. The constraint C ′ = C0 = 0.2925 was
maintained on the order of 10−8 during the morphing of c. The search procedure
was terminated when a single nontrivial projected Hessian eigenvalue on the order of
10−5 was identified; additional ‘null’ eigenvalues might be discovered upon further
searching. Correspondingly, L1 monotonically decreased from 1.5101 to 0.5264. In
Fig. 4a, the constraint parameter that changes the most is c9, which compensates for
the changes in c1 through c8 while the constraint function C ′ = C0 is maintained.
Figure 4b displays the projected Hessian eigenvalues before and after the constraint
parameter morphing procedure, where λ̃9 evolves to 10−5 (noting that λ̃10 represents
the trivially zero eigenvalue of H̃).

The breadth of a landscape level set may depend on a number of factors, including
the permitted change in the observable value defined as acceptable and appropriate
tolerances in control variation. In this simulation, a level set was defined by allowing
P1→4 to vary no more than 10−4. Using the initially trapped controls β trap,

β trap = [−0.0053,−0.0114, 0.9725, 0.0530, 0.0147, 1.1747,

− 0.2757,−0.0888, 0.3615,−0.0568] (42)
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Fig. 4 Using the constraint parameter morphing procedure laid out in Sect. 2.4, a set of M ′ + 1 = 9
constraint parameters c were varied in an effort to change the topology of the P1→4 trap from an isolated
point into a level set. The evolution of constraint parameters cl , l = 1, . . . , 9 is shown in (a). All cl are
initially zero and evolve according to the minimization of L1 in Eq. (35). The largest change occurs for c9,
per Eq. (41) evidently to compensate for the changes in c1 through c8. The projected Hessian (c.f., Eq. 20)
eigenvalues before and after the constraint parameter morphing technique is employed are shown in (b).
One (nontrivial) eigenvalue on the order of 10−5 was identified (index 9) and judged sufficiently ‘zero’ to
use for subsequent level set traversal. L1 decreased from 1.5101 to 0.5264

and the morphed values for c (i.e., the squares in Fig. 4a), the controls were varied
according to the second-order procedure described in Sect. 2.3. The free function g′
(c.f., Eq. 24) was a randomly generated vector held fixed while performing the level set
trajectory. The trajectory was halted when P1→4 changed by more than 10−4, resulting
in the final control parameters

βls = [−0.0159,−0.0207, 0.9677, 0.2159, 0.1678, 1.1582,

−0.2676,−0.1141, 0.6307,−0.1252]. (43)

The overall changes, β trap → βls , are quite significant. The projected Hessian eigen-
values were computed at this new value of βls and it was observed that the smallest
nontrivial eigenvalue had increased to 10−3; practice indicates that a null eigenvalue
needs to be ∼10−5 in order to perform a level set trajectory and keep Pi→ f fixed to
acceptable accuracy. The constraint parameter morphing procedure could be initiated
again starting at βls to attempt to find at least one new nontrivial zero projected Hessian
eigenvalue and then take another step. Such an iterative process could be employed
as a means to explore the boundary of a trap level set to specified precision. The use
of a different free function g′ also results in distinct level set traversals and different
values for the controls.

3.2.2 Turning an isolated point into a saddle

The topological transformation performed in Sect. 3.2.1 turned an isolated trap into a
level set, which was accomplished through minimization of L1 (c.f., Eq. 35) via con-
trolled variations of the constraint parameters c. Now we demonstrate the alternative

123



J Math Chem (2015) 53:718–736 733

capability of turning an isolated trap into a saddle. Thus, we seek a c that produces at
least one positive constrained Hessian eigenvalue.

A new N = 4-dimensional system is considered, where the diagonal elements of
H0 and the matrix μ are

H0 = [0.0534, 0.4873, 6.6637, 15.8803]

μ = [μ(1, 1) = 0.3300, μ(2, 2) = 0.0522, μ(3, 3) = 0.1688, μ(4, 4) = 0.3073,

μ(1, 2) = 0.2093, μ(1, 3) = 0.3685, μ(1, 4) = 0.1752, μ(2, 3) = 0.1498,

μ(2, 4) = 0.2885, μ(3, 4) = 0.2420]

and amplitude controls are again employed. A resonant initial field of the form in Eq.
(39) was generated, where M = 15 amplitudes and phases were initially randomly
chosen from the domains [0, 1] and [0, 2π ], respectively. In contrast to the simulations
above where only a subset of the field amplitudes β were incorporated in a function
constraint, in this example we considered all M = 15 amplitudes to be constrained
following C in Eq. (40) (i.e., where M ′ = M = 15). The initial random choice of β

produced C0 = 0.3714, which was demanded to remain fixed during a constrained
optimization of P1→4. An isolated trap was encountered at P1→4 = 0.2212, where all
constrained Hessian eigenvalues were negative (results not shown).

A set of L = M + 1 = 16 constraint parameters was incorporated into Eq. (41).
Figure 5a shows the initial and final values for c as they vary to produce at least
one positive constrained Hessian eigenvalue through maximization of L2 in Eq.
(38). The constraint C ′ = 0.3714 was maintained on the order of 10−7 during the
evolution of c. The constraint morphing procedure was terminated when a posi-
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Fig. 5 Using the procedure laid out in Sect. 2.4, a set of 16 constraint parameters c (all initially zero) are
allowed to morph in an effort to change the topology of the P1→4 = 0.2212 trap from an isolated point
into a saddle. The function L2 (c.f., Eq. 38) is maximized during the variation of c. In (a), the constraint
parameters evolve from circles to squares. In (b), the evolution of the constrained Hessian eigenvalues is
monitored; the squares represent the eigenvalues identified at the final stage of the constraint morphing
procedure. Three positive eigenvalues are identified, which correspond to directions in which the controls
(e.g., amplitudes) may change to possibly further ascend the P1→4 landscape

123



734 J Math Chem (2015) 53:718–736

0 1000 2000 3000 4000 5000 6000 7000 8000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s’

P 1
→

 4

Fig. 6 Increase in P1→4 over variation in control amplitudes after morphing of the constraint parameters
c to identify a saddle in Fig. 5. The first-order landscape ascent algorithm from Sect. 2.1 was employed. In
this case, the imposed constraint assumes the form C ′ (c.f., Eq. 41), where the values for c are identified
as squares in Fig. 5a. A gradient algorithm was able to morph the amplitudes resulting in a climb from the
initial trap at P1→ f = 0.2212 to eventually reach P1→4 = 0.9011, where another trap is encountered.
Another saddle region appears to be approached near s′ ∼ 3,000−4,000, but the controls continue to
change and move around the new saddle so as to further ascend the landscape

tive eigenvalue on the order of ∼10−1 was identified. In this example, L2 increased
from −2.1062 to −0.6778. Figure 5b displays the corresponding initial constrained
Hessian eigenvalues (i.e., when cl = 0, l = 1, . . . , 16). Three positive eigenvalues
are identified at the end of the constraint morphing procedure, suggesting that with
coordinated variations in the amplitude controls, as dictated by eigenvectors associ-
ated with the positive eigenvalues, further ascent of the P1→4 landscape should be
possible. While it is feasible to directly ‘follow’ these directions of positive curva-
ture (i.e., using second-order constrained Hessian information), we now test whether
the landscape can be climbed by reverting to the first-order ascent algorithm from
Sect. 2.1.

The vector c was fixed at its morphed values (i.e., those represented as squares
in Fig. 5a), and the first-order constrained D-MORPH landscape ascent procedure
was utilized with the imposed constraint C ′ = 0.3714. The amplitudes started from
their trapped values, and Fig. 6 shows the increase in P1→4 where the index s′ is
used to distinguish this climb from the ascent to the trap at P1→4 = 0.2212. Ini-
tially, the new climb is slow, but near s′ ∼ 1,500 the algorithm is able to ‘locate’
the direction of positive landscape curvature as indicated by the positive constrained
Hessian eigenvalues. A distinct feature seen in Fig. 6 is that another saddle seems to be
encountered on the climb in the window s′ ∼ 3,500−4,000, where the climb slows.
The controls eventually escape the additional saddle region and climb to a higher
P1→4 value. However, a new trap is encountered at P1→4 = 0.9011, as confirmed
from the eigenvalues of HC being all negative (not shown). The fields corresponding
to the control amplitudes at P1→4 = 0.2212 and 0.9011 are shown in Fig. 7 as solid
and dash-dot curves, respectively. While complete control was not attained, a dra-
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Fig. 7 Control fields corresponding to the amplitudes at P1→4 = 0.2212 (solid curve) and 0.9011 (dash-dot
curve) from Fig. 6. While complete control is not achieved, a substantial increase in P1→4 was accomplished
through variation of constrained controls after morphing of the constraint parameters in the transformation
of a trap into a saddle

matic increase in P1→4 was achieved, indicating that systematic relaxation of control
resources can permit landscape topology variation that potentially allows for increased
control.

4 Conclusions

In any quantum control experiment, constraints on resources are unavoidable. In an
experimental setting, one must consider the tradeoff between control fidelity and
the costs of constraint relaxation. Understanding the role of constraints in achiev-
ing optimal control and their impact on apparent control landscape topology remains
an important research goal, and the present work is a step towards that aim. This paper
worked with natural physical variables arising in ε(t), in contrast to prior constrained
quantum control studies that utilized more abstract kinematic variables [10,11]. An
algorithm was presented to ascend the transition probability landscape under arbitrary
constrained controls until a critical point is reached. The local landscape topology
about the critical point can be explored through an examination of the constrained
Hessian. A mathematical methodology was presented that enables seeking topological
transformations at suboptimal traps through systematic variation of a set of constraint
parameters, introduced to alter the form of the constraint. The tools introduced here
are general thereby permitting consideration of a variety of control-constraint form
pairings. Numerical simulations were presented in Sect. 3 for simple cases to illus-
trate the tools laid out in Sect. 2. A set of dynamic control variables first encountered a
suboptimal trap during a constrained landscape ascent. One example showed the capa-
bility of the constraint parameter morphing procedure to transform an isolated trap
into a level set, followed by traversal on the newly created level set over a sequence of
distinct, homologous controls. A second example demonstrated a transformation of
an isolated trap into a saddle, permitting subsequent climbing to a much higher yield.
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Iteration of these procedures will generally be required to make larger excursions over
the landscape.

The complex interplay between controls and constraints make it virtually impossi-
ble to know a priori how to relax the constraints, especially in a minimal fashion, to
achieve enhanced control performance. The procedures developed here enable judi-
cious systematic variations of control resources to explore their effects on apparent
constrained landscape topology. The controls may also be expanded to include the
Hamiltonian structure (i.e., H0 and/or μ) as resources when system engineering or
manipulation is possible [16–18]. Thus, future studies may explore a variety of pos-
sible control variables and constraints to investigate the rich nature of constrained
control landscape topology.
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